Passage of Inhaled Particles Into the Blood Circulation in Humans

Author:

Nemmar A.1,Hoet P.H.M.1,Vanquickenborne B.1,Dinsdale D.1,Thomeer M.1,Hoylaerts M.F.1,Vanbilloen H.1,Mortelmans L.1,Nemery B.1

Affiliation:

1. From the Laboratory of Pneumology (Lung Toxicology) (A.N., P.H.M.H., M.T., B.N.), Nuclear Medicine (B.V., H.V., L.M.), and Center for Molecular and Vascular Biology (M.F.H.), Katholieke Universiteit Leuven, Leuven, Belgium; and the MRC Toxicology Unit (D.D.), Leicester, UK.

Abstract

Background Pollution by particulates has been consistently associated with increased cardiovascular morbidity and mortality. However, the mechanisms responsible for these effects are not well-elucidated. Methods and Results To assess to what extent and how rapidly inhaled pollutant particles pass into the systemic circulation, we measured, in 5 healthy volunteers, the distribution of radioactivity after the inhalation of “Technegas,” an aerosol consisting mainly of ultrafine 99m Technetium-labeled carbon particles (<100 nm). Radioactivity was detected in blood already at 1 minute, reached a maximum between 10 and 20 minutes, and remained at this level up to 60 minutes. Thin layer chromatography of blood showed that in addition to a species corresponding to oxidized 99m Tc, ie, pertechnetate, there was also a species corresponding to particle-bound 99m Tc. Gamma camera images showed substantial radioactivity over the liver and other areas of the body. Conclusions We conclude that inhaled 99m Tc-labeled ultrafine carbon particles pass rapidly into the systemic circulation, and this process could account for the well-established, but poorly understood, extrapulmonary effects of air pollution.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3