Influence of contractile state on curvilinearity of in situ end-systolic pressure-volume relations.

Author:

Kass D A1,Beyar R1,Lankford E1,Heard M1,Maughan W L1,Sagawa K1

Affiliation:

1. Department of Internal Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland.

Abstract

Although in situ end-systolic pressure-volume relations (ESPVRs) are approximately linear throughout a limited load range, they often yield seemingly "negative" volume axis intercepts (V0) and V0 shifts with inotropic interventions. We tested whether or not these findings could stem from in situ ESPVR nonlinearity, and we examined the physiologic meaning and limitations of linearized ESPVR variables frequently used for assessing contractile state. Continuous left ventricular pressures and volumes were obtained by micromanometer and conductance (volume) catheters in six open-chest dogs. Left ventricular loading was varied throughout a wide range by rapid left atrial hemorrhage into a reservoir. Propranolol and verapamil were administered to reduce inotropic state, with heart rate maintained by atrioventricular sequential pacing. ESPVRs were fit to nonlinear [Pes = a(Ves-V'0)2 + b(Ves-V'0)] and linear (Pes = Ees (Ves-V0)] models. Contractile state was assessed by the slope of the ESPVR at V'0 (b, of nonlinear model) and by two other ESPVR model-independent measures: the slope of the dP/dtmax and end-diastolic volume relation, and the slope of the stroke work and end-diastolic volume relation. ESPVR was frequently curvilinear, and a significant correlation existed between the extent of nonlinearity (a) and contractile state. Volume intercepts derived from linear fits to the high load ESPVR range were mostly negative and were dependent on changes in Ees. V0 estimates derived from the low load portion were positive and relatively insensitive to Ees. Thus, in situ ESPVR displays contractility-dependent curvilinearity. The contractility range throughout which ESPVRs are essentially linear is typical for isolated hearts, but the range represents low values for in situ ventricles. Despite curvilinearity, Ees determined in situ throughout limited load ranges can accurately assess inotropic state; however, comparisons between ESPVRs should consider potential nonlinearity, and if possible, they should be made within similar end-systolic pressure ranges.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 282 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3