Erythropoietin Is a Novel Vascular Protectant Through Activation of Akt1 and Mitochondrial Modulation of Cysteine Proteases

Author:

Chong Zhao Zhong1,Kang Jing-Qiong1,Maiese Kenneth1

Affiliation:

1. From the Division of Cellular and Molecular Cerebral Ischemia (Z.Z.C., J.-Q.K., K.M.), Departments of Neurology (Z.Z.C., J.-Q.K., K.M.) and Anatomy and Cell Biology (K.M.), Center for Molecular Medicine and Genetics (K.M.), Institute of Environmental Health Sciences (K.M.), Wayne State University School of Medicine, Detroit, Mich.

Abstract

Background— Erythropoietin (EPO) is a critical regulator for the proliferation of immature erythroid precursors, but its role as a potential cytoprotectant in the cerebrovasculature system has not been defined. Methods and Results— We examined the ability of EPO to regulate a cascade of apoptotic death-related cellular pathways during anoxia-induced vascular injury in endothelial cells (ECs). EC injury was evaluated by trypan blue, DNA fragmentation, membrane phosphatidylserine (PS) exposure, protein kinase B activity, mitochondrial membrane potential, and cysteine protease induction. Exposure to anoxia alone rapidly increased genomic DNA fragmentation from 2±1% to 40±5% and membrane PS exposure from 3±2% to 56±5% over 24 hours. Administration of a cytoprotective concentration of EPO (10 ng/mL) prevented DNA destruction and PS exposure. Cytoprotection by EPO was completely abolished by cotreatment with anti-EPO neutralizing antibody, which suggests that EPO was necessary and sufficient for the prevention of apoptosis. Protection by EPO was intimately dependent on the activation of protein kinase B (Akt1) and the maintenance of mitochondrial membrane potential. Subsequently, EPO inhibited caspase 8-, caspase 1-, and caspase 3-like activities that were linked to mitochondrial cytochrome c release. Conclusions— The present work serves to illustrate that EPO can offer novel cytoprotection during ischemic vascular injury through direct modulation of Akt1 phosphorylation, mitochondrial membrane potential, and cysteine protease activity.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3