Novel Cardioprotective Role of a Small Heat-Shock Protein, Hsp20, Against Ischemia/Reperfusion Injury

Author:

Fan Guo-Chang1,Ren Xiaoping1,Qian Jiang1,Yuan Qunying1,Nicolaou Persoulla1,Wang Yang1,Jones W. Keith1,Chu Guoxiang1,Kranias Evangelia G.1

Affiliation:

1. From the Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio.

Abstract

Background— Heat-shock proteins (Hsps) have been shown to render cardioprotection from stress-induced injury; however, little is known about the role of another small heat-shock protein, Hsp20, which regulates activities of vasodilation and platelet aggregation, in cardioprotection against ischemia injury. We recently reported that increased expression of Hsp20 in cardiomyocytes was associated with improved contraction and protection against β-agonist–induced apoptosis. Methods and Results— To investigate whether overexpression of Hsp20 exerts protective effects in both ex vivo and in vivo ischemia/reperfusion (I/R) injury, we generated a transgenic (TG) mouse model with cardiac-specific overexpression of Hsp20 (10-fold). TG and wild-type (WT) hearts were then subjected to global no-flow I/R (45 minutes/120 minutes) using the Langendorff preparation. TG hearts exhibited improved recovery of contractile performance over the whole reperfusion period. This improvement was accompanied by a 2-fold decrease in lactate dehydrogenase released from the TG hearts. The extent of infarction and apoptotic cell death was also significantly decreased, which was associated with increased protein ratio of Bcl-2/Bax and reduced caspase-3 activity in TG hearts. Furthermore, in vivo experiments of 30-minute myocardial ischemia, via coronary artery occlusion, followed by 24-hour reperfusion, showed that the infarct region–to–risk region ratio was 8.1±1.1% in TG hearts (n=7), compared with 19.5±2.1% in WT hearts (n=11, P <0.001). Conclusions— Our data demonstrate that increased Hsp20 expression in the heart protects against I/R injury, resulting in improved recovery of cardiac function and reduced infarction. Thus, Hsp20 may constitute a new therapeutic target for ischemic heart diseases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 174 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3