Quantum Semiconductors Based on Carbon Materials for Nanophotonics and Photonics Applications by Electron Shuttle and Near Field Phenomena

Author:

Bracamonte A. Guillermo

Abstract

This review intended to resume key Research reports and publications that open many themes and topics related to Carbon-based semiconductors and Quantum emitters. The Design and synthesis of highly pure materials such as Graphene, Carbon Nanotubes, fullerenes, and other Carbon-based allotropes were shown. They presented their most important and promising properties concerning new studies and developments in photonics. Carbon-based Quantum dots, semiconductors, and higher sized Nanoplatforms allowed us to discuss fundamental studies and perspectives within varied applications. In this context, relevant developments from literature related to electron transfer within various targeted processes, where energy and light transfers occurred through different optical active materials and platforms, were highlighted and discussed. Therefore, many approaches that tuned the desired Optical active properties were shown. Thus, Hybrid materials from single Quantum and Nanoplatforms towards modified substrates were incorporated within varied media such as colloidal dispersions, solid devices, and waveguides. Moreover, Heterojunctions and applications such as energy harvesters and emitter devices were also presented. This manner highlighted varied topics of Photonics' leading current status, perspectives, and implications in Nanophotonics, Quantum photonics, and Optical lenses. Further views and commentaries about Green Photonics were presented as well.

Publisher

LIDSEN Publishing Inc

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3