Plagioclase population dynamics and zoning in response to changes in temperature and pressure

Author:

Andrews Benjamin J.1ORCID

Affiliation:

1. Global Volcanism Program, Smithsonian Institution, Washington, D.C. 20560, U.S.A.

Abstract

Abstract Zoned plagioclase crystals are often interpreted as proxies for magmatic history because the mineral is present in most silicic magmas and has compositional sensitivity to magmatic conditions (pressure, temperature, and composition) with slow internal diffusion that preserves compositional zones. Changes in growth rates and crystal dissolution present challenges to quantitatively relating time to particular zoning patterns. The numerical model SNGPlag uses Rhyolite MELTS to determine the equilibrium phase assemblage and compositions for a user-defined magma composition experimentally determined instantaneous nucleation and growth rates, and reasonable dissolution rates to examine plagioclase crystallization and population dynamics through time. The model tracks the numbers, sizes, morphologies, and compositional zoning of plagioclase crystals through time in response to changes in pressure, temperature, and volume or mass inputs. Model results show that significant fractions of time are functionally missing from the crystal record because of effectively zero growth rates or erased from the record through dissolution; in some instances, those processes can together remove ≫50% of time from the crystal record. The results show that temperature- (or pressure-) cycling alone will not produce substantial compositional zoning but that the addition of new magma is required to grow complexly zoned phenocrysts. Comparison of the input pressure-temperature-time series with compositional transects shows that the crystal record is biased toward more recent intervals and periods of decreasing temperature (i.e., neither the peak temperatures nor intervals of prolonged, cool storage are favored). Crystallization (or dissolution during heating) acts to return magmas to near-equilibrium crystal fractions within hundreds of days.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3