Mineralogy of the 2019 Aguas Zarcas (CM2) carbonaceous chondrite meteorite fall

Author:

Garvie Laurence A.J.1

Affiliation:

1. Center for Meteorite Studies, Arizona State University, Tempe, Arizona 85287-6004, U.S.A.

Abstract

Abstract The 2019 Aguas Zarcas CM2 meteorite is the most significant carbonaceous chondrite CM2 fall since Murchison in 1969. Samples collected immediately following the fall and studied here provide the rare opportunity to analyze the bulk mineralogy of a CM2 largely free of terrestrial contamination. Bulk samples were analyzed by powder X-ray diffraction (XRD), thermal gravimetric (TG) analysis, evolved gas analysis (EGA), and scanning electron microscopy (SEM) with an electron-probe micro-analyzer (EPMA). Water-extracted salts were analyzed by XRD. In hand specimen, the stones are brecciated and dominated by chondrule-rich and chondrule-poor lithologies, and locally, a matrix-rich lithology. Powder XRD patterns from multiple stones are dominated by reflections from serpentine group minerals, on which are superimposed reflections for ferrotochilinite, 1:1 regularly interstratified ferrotochilinite/cronstedtite, anhydrous silicates, calcite, pentlandite, pyrrhotite, and minor phases. Reflections for magnetite are present only from a metal-rich breccia clast. The serpentine XRD reflections from the chondrule-rich and chondrule-poor lithologies match those from 1T cronstedtite, whereas those from the matrix-rich lithology match the 1M polytype. Patterns with the 1M polytype also show a distinct low-angle scattering to the serpentine basal reflection centered near 8.6 Å, the origin of which is obscure. Further matching of the known serpentines to the Aguas Zarcas data shows that cronstedtite accounts for a subordinate amount of the clays, and at least three other chemically and structurally distinct serpentines are likely present. A typical fragment of Aguas Zarcas yielded 0.6 wt% water-extractable salts. The powder XRD pattern of the dried water extract shows reflections for halite = NaCl; chlorartinite = Mg2(CO3)(OH)Cl·2H2O; thenardite = Na2SO4; and sodium chlorate = NaClO4. The TG mass losses of 11.4 to 14.7 wt% are consistent with other CM2 chondrites. The gases detected by EGA are dominated by H2O and CO2, largely derived from the dehydroxylation and decomposition of serpentine and calcite, respectively. Also detected are gases with masses matching SO2/S2 and H2S, which are primarily released below 480 °C, and a mass of 30, which matches the molecular weight of formaldehyde and ethane, shows a maximum at 376 °C. These organic gases likely derive from the pyrolysis of indigenous organic matter. Taken together, the millimeter-scale mineralogical study of Aguas Zarcas reveals a complex breccia dominated by CM2-like clasts. The detailed study of this meteorite, together with similar studies from a range of carbonaceous chondrites, provides the foundations for studying and interpreting the samples returned from the NASA OSIRIS-REx and JAXA Hayabusa2 missions.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3