Experimental determination of quartz solubility in H2O-CaCl2 solutions at 600–900 °C and 0.6–1.4 GPa

Author:

Makhluf Adam R.1,Newton Robert C.1,Manning Craig E.12

Affiliation:

1. Department of Earth, Planetary and Space Sciences, University of California Los Angeles, Los Angeles, California 90095-1567, U.S.A.

2. † Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.

Abstract

Abstract Fluid-mediated calcium metasomatism is often associated with strong silica mobility and the presence of chlorides in solution. To help quantify mass transfer at lower crustal and upper mantle conditions, we measured quartz solubility in H2O-CaCl2 solutions at 0.6–1.4 GPa, 600–900 °C, and salt concentrations to 50 mol%. Solubility was determined by weight loss of single-crystals using hydrothermal piston-cylinder methods. All experiments were conducted at salinity lower than salt saturation. Quartz solubility declines exponentially with added CaCl2 at all conditions investigated, with no evidence for complexing between silica and Ca. The decline in solubility is similar to that in H2O-CO2 but substantially greater than that in H2O-NaCl at the same pressure and temperature. At each temperature, quartz solubility at low salinity (XCaCl2 < 0.1) depends strongly on pressure, whereas at higher XCaCl2 it is nearly pressure independent. This behavior is consistent with a transition from an aqueous solvent to a molten salt near XCaCl2 ~0.1. The solubility data were used to develop a thermodynamic model of H2O-CaCl2 fluids. Assuming ideal molten-salt behavior and utilizing previous models for polymerization of hydrous silica, we derived values for the activity of H2O (aH2O), and for the CaCl2 dissociation factor (α), which may vary from 0 (fully associated) to 2 (fully dissociated). The model accurately reproduces our data along with those of previous work and implies that, at conditions of this study, CaCl2 is largely associated (<0.2) at H2O density <0.85 g/cm3. Dissociation rises isothermally with increasing density, reaching ~1.4 at 600 °C, 1.4 GPa. The variation in silica molality with aH2O in H2O-CaCl2 is nearly identical to that in H2O-CO2 solutions at 800 °C and 1.0 GPa, consistent with the absence of Ca-silicate complexing. The results suggest that the ionization state of the salt solution is an important determinant of aH2O, and that H2O-CaCl2 fluids exhibit nearly ideal molecular mixing over a wider range of conditions than implied by previous modeling. The new data help interpret natural examples of large-scale Ca-metasomatism in a wide range of lower crustal and upper mantle settings.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3