Mechanisms of fluid degassing in shallow magma chambers control the formation of porphyry deposits

Author:

Wang Zixuan123,Zheng Yuanchuan13,Xu Bo12,Hou Zengqian4,Shen Yang5,Zhang Aiping6,Wang Lu1,Wu Changda4,Guo Qingfeng2

Affiliation:

1. State Key Laboratory of Geological Processes and Mineral Resources and School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, People’s Republic of China

2. School of Gemology, China University of Geosciences, Beijing 100083, People’s Republic of China

3. Frontiers Science Center for Deep-Time Digital Earth, China University of Geosciences, Beijing 100083, People’s Republic of China

4. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, People’s Republic of China

5. State Key Laboratory of Marine Geology, and School of Ocean and Earth Science, Tongji University, Shanghai 200092, P. R. China

6. College of Resource Environment and Earth Sciences, Yunnan University, Kunming 650091, People’s Republic of China

Abstract

Abstract Magmatic fluid degassing within shallow magma chambers underneath the ore bodies is critical to the formation of porphyry Cu-Au deposits (PCDs). Yet, it remains unclear that how the ways of fluid degassing influence on the development of PCDs. Here, geochemical data of apatite, amphibole and plagioclase from ore-forming and coeval barren porphyries have been analyzed in Sanjiang metallogenic belt, China. The ore-forming porphyries normally exhibit high and wide XF/XCl (31.76-548.12) and XF/XOH (0.779-7.370) ratios of apatites, which are evidently higher than those of the barren porphyries (XF/XCl of 1.03-26.58; XF/XOH of 0.686-3.602). Combined with the continuous variation features of Cl/OH ratios and H2O contents of melts calculated by amphiboles, as well as fluid migration models, we constrained the mechanisms of fluid degassing within shallow magma chambers underneath PCDs. There are three different ways of fluid degassing, while only fluid degassing via fluid channel stage can migrate and focus the metal-rich fluids effectively, conducive to the development of PCDs. The mechanisms of magmatic fluid degassing processes are further controlled by the storage depths of magma chambers and initial H2O contents of the magmas revealed by the compositions of amphibole, plagioclase and thermodynamic modelling. Magmas, with shallower storage depth and higher initial H2O content, are more likely to experience extensive and focused fluid degassing, leading to the generation of PCDs. This study demonstrates the potential utility of integrated mineral analyses, the thermodynamic modelling for investigating the mechanisms of magmatic fluid degassing in porphyry systems, as well as identifying prospective buried PCDs.

Publisher

Mineralogical Society of America

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3