Equations of state, phase relations, and oxygen fugacity of the Ru-RuO2 buffer at high pressures and temperatures

Author:

Armstrong Katherine1,Siersch Nicki C.1,Boffa-Ballaran Tiziana1,Frost Daniel J.12,Yu Tony3,Wang Yanbin3

Affiliation:

1. Bayerisches Geoinstitut, University of Bayreuth, Universität Strasse 30 95447, Bayreuth, Germany

2. † Orcid 0000-0002-4443-8149

3. GSECARS, University of Chicago, Building 434A, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, U.S.A.

Abstract

Abstract Experimental studies and measurements of inclusions in diamonds show that ferric iron components are increasingly stabilized with depth in the mantle. To determine the thermodynamic stability of such components, their concentration needs to be measured at known oxygen fugacities. The metal-oxide pair Ru and RuO2 are ideal as an internal oxygen fugacity buffer in high-pressure experiments. Both phases remain solid to high temperatures and react minimally with silicates, only exchanging oxygen. To calculate oxygen fugacities at high pressure and temperature, however, requires information on the phase relations and equation of state properties of the solid phases. We have made in situ synchrotron X-ray diffraction measurements in a multi-anvil press on mixtures of Ru and RuO2 to 19.4 GPa and 1473 K with which we have determined phase relations of the RuO2 phases and derived thermal equations of state (EoS) parameters for both Ru and RuO2. Rutile-structured RuO2 was found to undergo two phase transformations, first at ~7 GPa to an orthorhombic structure and then above 12 GPa to a cubic structure. The phase boundary of the cubic phase was constrained for the first time at high pressure and temperature. We have derived a continuous Gibbs free energy expression for the tetragonal and orthorhombic phases of RuO2 by fitting the second-order phase transition boundary and P-V-T data for both phases, using a model based on Landau theory. The transition between the orthorhombic and cubic phases was then used along with EoS terms derived for both phases to determine a Gibbs free energy expression for the cubic phase. We have used these data to calculate the oxygen fugacity of the Ru + O2 = RuO2 equilibrium, which we have parameterized as a single polynomial across the stability fields of all three phases of RuO2. The expression is log10fO2(Ru – RuO2) = (7.782 – 0.00996P + 0.001932P2 – 3.76 × 10–5P3) + (–13 763 + 592P – 3.955P2)/T + (–1.05 × 106 – 4622P)/T2, which should be valid from room pressure up to 25 GPa and 773–2500 K, with an estimated uncertainty of 0.2 log units. Our calculated fO2 is shown to be up to 1 log unit lower than estimates that use previous expressions or ignore EoS terms.

Publisher

Mineralogical Society of America

Subject

Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3