Affiliation:
1. ISTANBUL TECHNICAL UNIVERSITY
Abstract
Maintenance, Repair and Overhaul (MRO) activities on aircraft and systems in aviation is a service sector that relies heavily on skilled workforce. The output of MRO activities is basically bringing the system reliability values, which decrease because of the use of aircraft and systems in certain flight times and landing and take-off numbers, to the default levels determined during the design phase. MRO companies are accountable to the civil aviation authorities who directly authorize them to ensure the required levels of reliability of their products. Airline companies request MRO services at the most convenient time and cost. However, the maintenance of an aircraft is a process that can take up to five weeks, includes plenty of jobs some of which may have stochastic durations, and many over-costed qualified technicians spend thousands of man-hours. In addition, each MRO company is involved in the maintenance of several airplanes arriving at different time intervals. In the study such a problem faced by an MRO company is addressed. The company’s aim is to schedule several incoming airplane maintenance projects. A framework that employs an integer programming (IP) model working on a rolling horizon (RH) setting is used.
Publisher
Suleyman Demirel University Visionary Journal
Reference29 articles.
1. Ashtiani, B., Leus, R., & Aryanezhad, M.-B. (2011). New competitive results for the stochastic resource-constrained project scheduling problem: Exploring the benefits of pre-processing. Journal of Scheduling, 14, 157–171.
2. Boukas, E. K., Yang, J., Zhang, Q., & Yin, G. (1996). Periodic Maintenance and Repair Rate Control in Stochastic Manufacturing Systems. Journal of Optimization Theory and Applications, 91(2), 347–361. https://doi.org/10.1007/BF02190100/METRICS
3. Bruecker, P. De, Beliën, J., den Bergh, J., & Demeulemeester, E. (2018). A three-stage mixed integer programming approach for optimizing the skill mix and training schedules for aircraft maintenance. European Journal of Operational Research, 267(2), 439–452.
4. Chandola, D. C., Jaiswal, K., Verma, S., & Singh, B. (2022). Aviation MRO: A comprehensive review of factors affecting productivity of Aircraft Maintenance Organization. 2022 Advances in Science and Engineering Technology International Conferences (ASET), 1–7.
5. Cheng, Y.-A., Zhang, L., Liu, Y.-B., & Mo, X.-N. (2010). Solution of MRO support system for large complex equipment. Computer Integrated Manufacturing System, 16(10), 0.