Calibration Procedures and Uncertainty in Wind Power Anemometers

Author:

Coquilla Rachael V.1,Obermeier John1,White Bruce R.2

Affiliation:

1. Otech Engineering, Inc., Davis, CA 95618

2. University of California at Davis, Davis, CA 95616

Abstract

Accurate wind measurements are critical in evaluating wind turbine power performance and site assessment. In a turbine power performance evaluation, wind speed readings are matched with corresponding turbine power measurements to produce a power curve for the turbine. For site assessment, the distribution of measured wind speed is used to determine the predicted annual energy production from the wind. Since wind power is proportional to the cube of the wind speed, a small error in the wind measurement could translate to a much greater error in the predicted wind power, which emphasizes the importance of having accurate wind speed readings. To acquire such precision in wind data, it is recommended that individually calibrated anemometers be employed. With these calibrations, it is also recommended that the uncertainty in the calibration be reported so that it may be used not only in the overall uncertainty for turbine power curves and site assessments, but also in improving the performance of an anemometer. A method of presenting calibration uncertainty is defined in the standard IEC 61400-12-1. However, the standard only refers to the measurement uncertainty of the reference wind speed from the particular test facility. It does not include the uncertainty in the anemometer linear transfer function and the errors directly made by the anemometer signal. This paper will discuss: 1) the details of uncertainty reporting as defined by IEC 61400-12-1, 2) a method of extending the uncertainty to include the errors when using the linear transfer function, and 3) a qualitative description of how to determine the uncertainty in a wind speed measurement in the field.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference10 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3