Greenhouse Gas Emissions from Refrigeration Equipment in Malaysia

Author:

Saidur R1,Sattar MA,Masjuki H.H.1,Jamaluddin M.Y.2

Affiliation:

1. Department of Mechanical Engineering, Malaysia

2. Department of Applied Economics 50603 Kuala Lumpur, Malaysia

Abstract

This paper presents an analysis of the greenhouse gas (GHG) emissions from refrigeration equipment. The refrigeration equipments use refrigerants such as chlorofluorocarbons (CFCs) and hydrofluorocarbons HFCs, which are believed to contribute the ozone depletion and global warming. Refrigeration equipment thus contributes indirectly through emission due to electricity consumption and directly due to the emission of refrigerants. Greenhouse gas emissions resulting from the burning of fossil fuels are quantified and presented in this paper. The calculation was carried out based on emissions per unit electricity generated and the type of fuel used. The direct emission of refrigerant was calculated based on emission factor and according to the procedure of Environmental Protection Agency (EPA), USA. A study was conducted to evaluate the refrigerant losses to the atmosphere and the CO2 emission from fossil fuels to generate power to run the refrigeration and air-conditioning systems. In this paper, total appliance annual energy consumption by refrigerator-freezer and air conditioner as well as emission has been estimated for a period of 19 years (1997–2015) using the survey data. Energy savings and emission reductions achievable by raising thermostat set point temperature have been calculated for a period of 10 (i.e. 2005–2015) years.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3