Deflection Reliability Analysis of PSC Box-Girder Bridge under High-Speed Railway Loads

Author:

Guo Tong1,Liu Tie1,Li Aiqun1

Affiliation:

1. Key Laboratory of Concrete and Prestressed Concrete Structures, Ministry of Education, Southeast University, Nanjing 210096, China

Abstract

A high-speed railway (HSR) construction boom has been observed in China during the past few years, in which prestressed concrete (PSC) box-girders are widely used for HSR bridges. Concerns have been raised regarding the long-term deflection of girders under the combined actions of concrete creep, shrinkage, and tendon relaxation, since the time-variant deflection significantly undermines the safety of high-speed trains. This paper presents the time-variant deflection reliability analysis of an existing HSR PSC box-girder bridge, in which a hybrid method, consisting of the response surface (RS) method, the finite element (FE) method and the checking point method (i.e., the JC method), is used. The pre-and post-cracking behaviors of the thin-walled box girder are described by using composite degenerated shell elements with the smeared cracking model and the Hordijk's tension softening relation. In particular, the CEB-FIP model for creep and shrinkage is applied in the finite-element (FE) analyses. By using the probabilistic sensitivity analyses, random variables that significantly affect the time-variant deflection are selected for the reliability calculation. It is found that the deflection reliabilities are high in the early stage of bridge service but decrease rapidly during the first 10 to 20 service years. Higher speed limits result in a significant decrease in deflection reliability indices, which may fall below the target value prior to the expected service life. The proposed methodologies can be used in the design optimization, speed control and making rational maintenance or repair strategies for HSR PSC bridges.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3