Vortex Phase-Jitter in Acoustically Excited Bluff Body Flames

Author:

Shanbhogue Santosh J.1,Seelhorst Michael1,Lieuwen Tim1

Affiliation:

1. Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta GA, U.S.A.

Abstract

This paper describes an experimental study of the effect of acoustic excitation on bluff body stabilized flames, specifically on the flow field characteristics. The Kelvin-Helmholtz (KH) instability of the shear layer is excited due to the incident acoustics. In turn, the KH instability imposes a convecting, harmonic excitation on the flame, which leads to spatially periodic flame wrinkling and heat-release oscillations. Understanding the factors influencing these heat release oscillations requires an understanding of the generation, convection, and dissipation of these vortical disturbances. Phase locked particle image velocimetry was carried out over a range of conditions to characterize the vortical dynamics. It was found that the vortex core location exhibits “phase jitter”, manifested as cycle-to-cycle variation in flame and vorticity field at the same excitation phase. Phase jitter is shown to be a function of separation point dynamics, downstream convection time, and amplitude of acoustic excitation. It leads to fairly significant differences between instantaneous and ensemble averaged flow fields and, in particular, the decay rate of the vorticity in the axial direction.

Publisher

SAGE Publications

Subject

General Physics and Astronomy,Automotive Engineering,Energy Engineering and Power Technology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3