Human Menstrual Blood-Derived Stem Cells Ameliorate Liver Fibrosis in Mice by Targeting Hepatic Stellate Cells via Paracrine Mediators

Author:

Chen Lijun123,Zhang Chunfeng123,Chen Lu2,Wang Xiaojun2,Xiang Bingyu2,Wu Xiaoxing1,Guo Yang2,Mou Xiaozhou4,Yuan Li2,Chen Bo2,Wang Jinfu1,Xiang Charlie235

Affiliation:

1. a Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China

2. b State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China

3. c Molecular Diagnosis Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, People's Republic of China

4. d Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, People's Republic of China

5. e Institute for Cell-Based Drug Development of Zhejiang Province, Hangzhou, People's Republic of China

Abstract

Abstract Mesenchymal stem cells (MSCs) may have potential applications in regenerative medicine for the treatment of chronic liver diseases (CLDs). Human menstrual blood is a novel source of MSCs, termed menstrual blood-derived stem cells (MenSCs). Compared with bone marrow MSCs, MenSCs exhibit a higher proliferation rate and they can be obtained through a simple, safe, painless procedure without ethical concerns. Although the therapeutic efficacy of MenSCs has been explored in some diseases, their effects on liver fibrosis are still unclear. In the present study, we investigated the therapeutic effects of MenSC transplantation in a carbon tetrachloride-induced mouse model of liver fibrosis. These results revealed that MenSCs markedly improved liver function, attenuated collagen deposition, and inhibited activated hepatic stellate cells up to 2 weeks after transplantation. Moreover, tracking of green fluorescent protein-expressing MenSCs demonstrated that transplanted cells migrated to the sites of injury, but few differentiated into functional hepatocyte-like cells. Transwell coculturing experiments also showed that MenSCs suppressed proliferation of LX-2 cells (an immortalized hepatic stellate cell line) through secretion of monocyte chemoattractant protein-1, interleukin-6, hepatocyte growth factor, growth-related oncogene, interleukin-8, and osteoprotegerin. Collectively, our results provided preliminary evidence for the antifibrotic capacity of MenSCs in liver fibrosis and suggested that these cells may be an alternative therapeutic approach for the treatment of CLDs.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3