Effects of Medium Supplements on Proliferation, Differentiation Potential, and In Vitro Expansion of Mesenchymal Stem Cells

Author:

Gharibi Borzo1,Hughes Francis J.1

Affiliation:

1. Department of Periodontology, Dental Institute, Guy's Hospital, King's College London, London, United Kingdom

Abstract

Abstract Mesenchymal stem cells (MSCs) possess great potential for use in regenerative medicine. However, their clinical application may be limited by the ability to expand their cell numbers in vitro while maintaining their differential potentials and stem cell properties. Thus the aim of this study was to test the effect of a range of medium supplements on MSC self-renewal and differentiation potential. Cells were cultured until confluent and subcultured continuously until reaching senescence. Medium supplementation with fibroblast growth factor (FGF)-2, platelet-derived growth factor (PDGF)-BB, ascorbic acid (AA), and epidermal growth factor (EGF) both increased proliferation rate and markedly increased number of cell doublings before reaching senescence, with a greater than 1,000-fold increase in total cell numbers for AA, FGF-2, and PDGF-BB compared with control cultures. Long-term culture was associated with loss of osteogenic/adipocytic differentiation potential, particularly with FGF-2 supplementation but also with AA, EGF, and PDGF-BB. In addition FGF-2 resulted in reduction in expression of CD146 and alkaline phosphatase, but this was partially reversible on removal of the supplement. Cells expressed surface markers including CD146, CD105, CD44, CD90, and CD71 by flow cytometry throughout, and expression of these putative stem cell markers persisted even after loss of differentiation potentials. Overall, medium supplementation with FGF-2, AA, EGF, and PDGF-BB greatly enhanced the total in vitro expansion capacity of MSC cultures, although differentiation potentials were lost prior to reaching senescence. Loss of differentiation potential was not reflected by changes in stem cell surface marker expression.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3