Grapevine rootstock genotypes influences berry and wine phenolic composition (<i>Vitis vinifera </i> L. cv. Pinot noir)

Author:

Blank MagaliORCID,Samer Sabrina,Stoll ManfredORCID

Abstract

Grapevine rootstocks can affect the nitrogen (N) status of the grafted plant due to discrepancies in their nutrient uptake and their efficiency in the allocation of assimilates. When N becomes a limiting factor, the production of phenolic compounds in grapes is enhanced as a result of a down-regulation of the flavonoid production pathway. However, it is still not fully understood if the impact of rootstocks on fruit and wine composition is mediated by their effect on the vegetative growth and N status of the scion. The main objective of the study was to test if rootstock influence on Pinot noir berry and wine phenolic composition could be related to the N status of the scion. An investigation was carried out on Pinot noir (Vitis vinifera L.) vines grafted onto six rootstocks over three vintages (2012–2014). A micro-scale fermentation technique was used to produce wines from each field replicate. Scions grafted onto SO4, a high vigour rootstock, were characterised by a 15 % higher tannin concentration in berry seed and skin compared to those grafted onto the low vigour Riparia Gloire de Montpellier, while final tannin concentration in wines depended on the rootstock. Anthocyanin concentration was higher in berries of Pinot noir grafted onto R110 compared to 125AA, which was also reflected in the wines. A Multiple Linear Regression analysis suggested that rootstock influence on berry anthocyanins was linked to the N status of scion leaves (higher Leaf NBI_R). Understanding the interaction between the N uptake efficiency of rootstocks and scion berry/wine phenolic composition will help improve the selection of suitable rootstocks that match the desired wine profile.

Publisher

Universite de Bordeaux

Subject

Horticulture,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3