Probing Chern number by opacity and topological phase transition by a nonlocal Chern marker

Author:

Molignini Paolo1,Lapierre Bastien2,Chitra Ramasubramanian3,Chen Wei4

Affiliation:

1. University of Cambridge

2. University of Zurich

3. Swiss Federal Institute of Technology in Zurich (ETH)

4. Pontifical Catholic University of Rio de Janeiro

Abstract

In 2D semiconductors and insulators, the Chern number of the valence band Bloch state is an important quantity that has been linked to various material properties, such as the topological order. We elaborate that the opacity of 2D materials to circularly polarized light over a wide range of frequencies, measured in units of the fine structure constant, can be used to extract a spectral function that frequency-integrates to the Chern number, offering a simple optical experiment to measure it. This method is subsequently generalized to finite temperature and locally on every lattice site by a linear response theory, which helps to extract the Chern marker that maps the Chern number to lattice sites. The long range response in our theory corresponds to a Chern correlator that acts like the internal fluctuation of the Chern marker, and is found to be enhanced in the topologically nontrivial phase. Finally, from the Fourier transform of the valence band Berry curvature, a nonlocal Chern marker is further introduced, whose decay length diverges at topological phase transitions and therefore serves as a faithful indicator of the transitions, and moreover can be interpreted as a Wannier state correlation function. The concepts discussed in this work explore multi-faceted aspects of topology and should help address the impact of system inhomogeneities.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Engineering and Physical Sciences Research Council

Publisher

Stichting SciPost

Subject

Statistical and Nonlinear Physics,Atomic and Molecular Physics, and Optics,Nuclear and High Energy Physics,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Local Chern marker for periodic systems;Physical Review B;2024-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3