On scalar products in higher rank quantum separation of variables

Author:

Maillet Jean Michel123,Niccoli Giuliano123,Vignoli Louis123

Affiliation:

1. Claude Bernard University Lyon 1

2. University of Lyon

3. École Normale Supérieure de Lyon

Abstract

Using the framework of the quantum separation of variables (SoV) for higher rank quantum integrable lattice models , we introduce some foundations to go beyond the obtained complete transfer matrix spectrum description, and open the way to the computation of matrix elements of local operators. This first amounts to obtain simple expressions for scalar products of the so-called separate states, that are transfer matrix eigenstates or some simple generalization of them. In the higher rank case, left and right SoV bases are expected to be pseudo-orthogonal, that is for a given SoV co-vector \langle\underline{\mathbf{h}}\rangle𝐡̲, there could be more than one non-vanishing overlap \langle{\underline{\mathbf{h}}}|{\underline{\mathbf{k}}}\rangle𝐡̲|𝐤̲ with the vectors |{\underline{\mathbf{k}}}\rangle|𝐤̲ of the chosen right SoV basis. For simplicity, we describe our method to get these pseudo-orthogonality overlaps in the fundamental representations of the \mathcal{Y}(gl_3)𝒴(gl3) lattice model with NN sites, a case of rank 2. The non-zero couplings between the co-vector and vector SoV bases are exactly characterized. While the corresponding SoV-measure stays reasonably simple and of possible practical use, we address the problem of constructing left and right SoV bases which do satisfy standard orthogonality (by standard we mean \langle{\underline{\mathbf{h}}}|{\underline{\mathbf{k}}}\rangle \propto \delta_{\underline{\mathbf{h}}, \underline{\mathbf{k}}}𝐡̲|𝐤̲δ𝐡̲,𝐤̲). In our approach, the SoV bases are constructed by using families of conserved charges. This gives us a large freedom in the SoV bases construction, and allows us to look for the choice of a family of conserved charges which leads to orthogonal co-vector/vector SoV bases. We first define such a choice in the case of twist matrices having simple spectrum and zero determinant. Then, we generalize the associated family of conserved charges and orthogonal SoV bases to generic simple spectrum and invertible twist matrices. Under this choice of conserved charges, and of the associated orthogonal SoV bases, the scalar products of separate states simplify considerably and take a form similar to the \mathcal{Y}(gl_2)𝒴(gl2) rank one case.

Funder

Centre National de la Recherche Scientifique

École Normale Supérieure de Lyon

Publisher

Stichting SciPost

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3