5d SCFTs and their non-supersymmetric cousins

Author:

Akhond Mohammad1,Honda Masazumi1,Mignosa Francesco2

Affiliation:

1. Kyoto University

2. Technion – Israel Institute of Technology

Abstract

We consider generalisations of the recently proposed supersymmetry breaking deformation of the 5d rank-1 E_1E1 superconformal field theory to higher rank. We generalise the arguments to theories which admit a mass deformation leading to gauge theories coupled to matter hypermultiplets at low energies. These theories have a richer space of non-supersymmetric deformations, due to the existence of a larger global symmetry. We show that there is a one-to-one correspondence between the non-SUSY deformations of the gauge theory and their (p,q)(p,q) 5-brane web. We comment on the (in)stability of these deformations both from the gauge theory and the 5-brane web point of view. UV duality plays a key role in our analysis, fixing the effective Chern-Simons level for the background vector multiplets, together with their complete prepotential. We partially classify super-Yang-Mills theories known to enjoy UV dualities which show a phase transition where different phases are separated by a jump of Chern-Simons levels of both a perturbative and an instantonic global symmetry. When this transition can be reached by turning on a non-supersymmetric deformation of the UV superconformal field theory, it can be a good candidate to host a 5d non-supersymmetric CFT. We also discuss consistency of the proposed phase diagram with the ’t Hooft anomalies of the models that we analyse.

Funder

Israel Science Foundation

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Stichting SciPost

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The geometry of GTPs and 5d SCFTs;Journal of High Energy Physics;2024-07-18

2. Complete prepotentials of 5d higher rank theories;Journal of High Energy Physics;2024-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3