Neural quantum state study of fracton models

Author:

Machaczek Marc123ORCID,Pollet Lode12ORCID,Liu Ke412ORCID

Affiliation:

1. Arnold Sommerfeld Center for Theoretical Physics

2. Munich Center for Quantum Science and Technology

3. University of Augsburg

4. University of Science and Technology of China

Abstract

Fracton models host unconventional topological orders in three and higher dimensions and provide promising candidates for quantum memory platforms. Understanding their robustness against quantum fluctuations is an important task but also poses great challenges due to the lack of efficient numerical tools. In this work, we establish neural quantum states (NQS) as new tools to study phase transitions in these models. Exact and efficient parametrizations are derived for three prototypical fracton codes — the checkerboard and X-cube model, as well as Haah’s code — both in terms of a restricted Boltzmann machine (RBM) and a correlation-enhanced RBM. We then adapt the correlation-enhanced RBM architecture to a perturbed checkerboard model and reveal its strong first-order phase transition between the fracton phase and a trivial field-polarizing phase. To this end, we simulate this highly entangled system on lattices of up to 512 qubits with high accuracy, representing a cutting-edge application of variational neural-network methods. In addition, we reproduce the phase transition of the X-cube model previously obtained with quantum Monte Carlo and high-order series expansion methods. Our work demonstrates the remarkable potential of NQS in studying complicated three-dimensional problems and highlights physics-oriented constructions of NQS architectures.

Funder

Deutsche Forschungsgemeinschaft

FP7 Seventh Framework Programme

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Stichting SciPost

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3