Tribology Behavior of In-Situ FDM 3D Printed Glass Fibre-Reinforced Thermoplastic Composites

Author:

Liow Yu Heng,Ismail Khairul Izwan,Yap Tze ChuenORCID

Abstract

Fused deposition modeling (FDM) 3D-printed parts are generally weaker compared to injection-moulded parts. Fibre reinforcement is one of the techniques used to enhance the mechanical strength and the tribological behavior of the FDM-printed parts. Recently, a new method for creating FDM 3D-printed composites was developed. Current work focuses on the tribological behavior of the glass fibre-reinforced PLA, manufactured using this new composite manufacturing method. Experiments were conducted to investigate the effect of Glass Fibre (GF) reinforcement on FDM 3D-printed thermoplastic composites, specifically polylactic acid (PLA) under different linear sliding speed and directions. All 3D printed glass fibre-reinforced PLA (PLA-GF) composites exhibited a lower wear rate and a higher friction coefficient compared to 3D printed PLA. Increasing in disc’s linear speed or sliding speed of the pins resulted in a lower coefficient of friction and wear rate. In addition, a perpendicular raster direction towards the disc rotation or pin motion experienced greater friction and greater wear.

Publisher

Lifescience Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3