Abstract
Heat transfer innovation is essential in modern society because thermal management systems need effective heating and cooling processes. It is also an essential component in the vehicle industry and other types of transportation, in addition to automobile industry, aviation technology, the computer industry, and the manufacturing industry. By the inspiration of importance of magnetohydrodynamic hybrid nanofluid over a stretching cylinder with the influence of Williamson fluid and porous medium is examined in this current study. To convert the PDEs into ODEs, suitable self-similarity transformation is used. After applying transformations, for graphical purpose we have used the bvp5c technique. The impact of active parameters affecting the fluid’s capacity to transfer significance is demonstrate in graphs and tables. In the result section we noticed on the velocity outlines decreased for increasing M parameter. The Cf and Nu increased for larger values of the M and curvature parameters. Additional properties of M and Rd parameter inputs result in improved temperature profiles.
Publisher
V. N. Karazin Kharkiv National University
Reference19 articles.
1. S. Choi, and J. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in: ASME International Mechanical Engineering Congress & Exposition, (San Francisco, CA, 1995). https://ecotert.com/pdf/196525_From_unt-edu.pdf
2. S.R. Reddisekhar Reddy, S. Jakeer, V.E. Sathishkumar, H.T. Basha, and J. Cho, “Numerical study of TC4-NiCr/EG+Water hybrid nanofluid over a porous cylinder with Thompson and Troian slip boundary condition: Artificial neural network model,” Case Stud. Therm. Eng. 53, 103794 (2024). https://doi.org/10.1016/J.CSITE.2023.103794
3. G. Ramasekhar, and P.B.A. Reddy, “Entropy generation on EMHD Darcy-Forchheimer flow of Carreau hybrid nano fluid over a permeable rotating disk with radiation and heat generation : Homotopy perturbation solution,” Proc. Inst. Mech. Eng. Part E, J. Process Mech. Eng. 2022, https://doi.org/10.1177/09544089221116575
4. G. Ramasekhar, and P.B.A. Reddy, “Entropy generation on Darcy–Forchheimer flow of Copper-Aluminium oxide/Water hybrid nanofluid over a rotating disk: Semi-analytical and numerical approaches,” Sci. Iran. 30(6), 2245–2259 (2023). https://doi.org/10.24200/sci.2023.60134.6617
5. S. Jakeer, and S.R.R. Reddy, “Electrokinetic membrane pumping flow of hybrid nanofluid in a vertical microtube with heat source/sink effect,” Eur. Phys. J. Plus, 138(6), 489 (2023). https://doi.org/10.1140/EPJP/S13360-023-04118-7