Study of the Effect of Cadmium Chloride on Some Marker Liver Enzymes of Experimental Animals

Author:

Smolyankin D.A.ORCID,Valova Y.V.ORCID,Karimov D.O.ORCID,Baygildin S.S.ORCID,Fazlyeva A.S.ORCID,Karimov D.D.ORCID,Khusnutdinova N.Yu.ORCID,Repina E.F.ORCID,Akhmadeev A.R.ORCID,Gizatullina A.A.ORCID

Abstract

Introduction. Cadmium (Cd) is one of the most powerful and dangerous pollutants. Cd exposure is associated with multiple organ damage in both animals and humans. The mechanism of Cd toxicity is the disruption of the body’s antioxidant system (AOS), which leads to transformation of the functional integrity of the liver. The extent of target organ damage can be examined by measuring concentrations of key indicators of hepatocellular injury. The purpose of the work is to evaluate changes in the activity of enzyme markers of hepatotoxicity in the blood serum of laboratory animals after oral exposure to an aqueous solution of cadmium chloride (CdCl2) under the conditions of a subchronic experimental model with a period of remission. Materials and methods. The study was conducted on 40 white outbred rats. Animals of three experimental groups were intragastrically administered a pollutant in various dosages for 3 months. The duration of the remission stage was 1 month. The activity of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) was determined in the blood serum of animals. Results. When CdCl2 was administered to animals at a dose of 1 μg/kg, an increase in AST activity was observed by 45.9% relative to the control (p=0.006). An increase in the concentration of ALT and LDH is shown. A dose-dependent decrease in the level of alkaline phosphatase was revealed in three groups of animals by 24.7%, 37.5% and 55.4%, respectively (p=0.002). The noted trends indicate pathological processes occurring in hepatocytes. Conclusion. In the course of this study, it was found that under the conditions of a subchronic model of the experiment with a period of remission, cadmium, having a pronounced hepatoxic effect, induces liver damage in experimental animals.

Publisher

Scientia Publishing House LTD

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3