Optimizing stainless steel tensile strength analysis: through data exploration and machine learning design with Streamlit

Author:

Leni DesmaritaORCID,Karudin ArwizetORCID,Abbas Muhammad RabiuORCID,Sharma Jai KumarORCID,Adriansyah AdriansyahORCID

Abstract

The use of Exploratory Data Analysis (EDA) and machine learning in material science has rapidly advanced in recent years. EDA enables researchers to thoroughly explore and analyze material datasets, while machine learning allows for the development of predictive models capable of understanding complex patterns within the data. This study aims to develop an optimization tool to enhance the analysis of tensile strength in stainless steel by leveraging integrated data exploration and machine learning approaches within the Streamlit framework. The developed tool consists of four main features: data visualization, correlation analysis, 3D visualization, and machine learning. The developed machine learning model has 14 input variables, including chemical elements and heat treatment temperatures. In this research, the machine learning features comprise three models: Decision Tree, Random Forest, and Artificial Neural Network. The research findings indicate that the optimization tool can automatically display stainless steel tensile strength data using available pandas profiling in the visualization feature. The correlation feature can illustrate the relationship between chemical elements and heat treatment temperatures concerning stainless steel tensile strength. The 3D visualization feature can be utilized to identify optimal values of chemical elements and heat treatment temperatures according to desired tensile strength. Meanwhile, the machine learning feature can accurately predict stainless steel tensile strength based on chemical composition and heat treatment temperatures. This is evident from the performance evaluation metrics of the Random Forest model, which achieved MAE of 10.36, RMSE of 14.44, and R-squared of 0.97

Publisher

OU Scientific Route

Reference45 articles.

1. Kumar, W., Sharma, U. K., Shome, M. (2021). Mechanical properties of conventional structural steel and fire-resistant steel at elevated temperatures. Journal of Constructional Steel Research, 181, 106615. https://doi.org/10.1016/j.jcsr.2021.106615

2. Yildiz, A. S., Davut, K., Koc, B., Yilmaz, O. (2020). Wire arc additive manufacturing of high-strength low alloy steels: study of process parameters and their influence on the bead geometry and mechanical characteristics. The International Journal of Advanced Manufacturing Technology, 108 (11-12), 3391–3404. https://doi.org/10.1007/s00170-020-05482-9

3. Jafarian, H. R., Sabzi, M., Mousavi Anijdan, S. H., Eivani, A. R., Park, N. (2021). The influence of austenitization temperature on microstructural developments, mechanical properties, fracture mode and wear mechanism of Hadfield high manganese steel. Journal of Materials Research and Technology, 10, 819–831. https://doi.org/10.1016/j.jmrt.2020.12.003

4. Zavdoveev, A., Poznyakov, V., Baudin, T., Rogante, M., Kim, H. S., Heaton, M. et al. (2021). Effect of heat treatment on the mechanical properties and microstructure of HSLA steels processed by various technologies. Materials Today Communications, 28, 102598. https://doi.org/10.1016/j.mtcomm.2021.102598

5. Baharuddin, M. Y., Salleh, S., Suhasril, A. A., Zulkifly, A. H., Lee, M. H., Omar, M. A. et al. (2014). Fabrication of Low‐Cost, Cementless Femoral Stem 316L Stainless Steel Using Investment Casting Technique. Artificial Organs, 38 (7), 603–608. https://doi.org/10.1111/aor.12222

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3