Experimental implementation of thermal enhancement performance of air heat exchanger’s pipes utilizing unconventional turbulator

Author:

Ismaeel Ali AbdulwahabORCID,Hussein Nassr FadhilORCID,Suffer Kadhim H.ORCID,Razlan Zuradzman MORCID

Abstract

Heat exchangers are widely used in industry, however, raising their performance are important for the variety of applications. Consequently, efficiency improvement associated with low production cost is considered in this experimental work. The current study aims to enhance the rate of heat transfer in pipe-type heat exchangers experimentally by using a novel nozzle as a turbulator. The cross-sectional shape of the nozzle is hexagonal, and the diameter ratio DR is equal to 0.5. Constant heat flux was maintained in the vicinity of the section of the test tube, while the working fluid was pumped into the open system at six discrete Reynolds number values ranging from 6000 to 19500. To investigate the effect of distance among the pieces, three turbulators with different numbers were assigned and named as (N=4, 5 and 6). The results indicated an increase of 172 %, 194 % and 216 % of the heat transfer rate for cases 4, 5 and 6 respectively comparing to the benchmark tube. On the other hand, the friction factor values increased remarkably due to the inserting of turbulators by about of 722.9 % for N=4, 823.9 % for N=5 and 886.7 % for N=6 compared to a plain tube case. Moreover, it has been established that with the insertion of 6 pieces two enhancements was observed; heat transfer rate and thermal performance, where, thermal performance of all cases exceeds unity (maximum thermal performance of 1.62 has been obtained by inserting 6 pieces of hexagonal nozzles turbulators). A comparison with another types of vortex generators shows the gap between the turbulator and heated surface offers a solution for problems occurred in the pipes of heat exchanger. The study therefore suggests a wider practical implementation of the turbulators

Publisher

OU Scientific Route

Subject

General Physics and Astronomy,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3