Transforming growth factor beta 1 (TGF beta 1) reduces cellular levels of p34cdc2, and this effect is abrogated by adenovirus independently of the E1A-associated pRB binding activity.

Author:

Abraham S E1,Carter M C1,Moran E1

Affiliation:

1. Cold Spring Harbor Laboratory, New York 11724.

Abstract

We have used E1A probes to study the roles of the p34cdc2 kinase and the retinoblastoma tumor susceptibility gene product (pRB) in transforming growth factor beta 1 (TGF beta 1)-mediated growth suppression in mink lung epithelial (Mv1Lu) cells. In agreement with previous reports, we see a decline in p34cdc2 kinase activity and a loss of pRB phosphorylation after TGF beta 1 treatment. We report here that TGF beta 1 induces not only a change in p34cdc2 kinase activity but a strong repression of p34cdc2 synthesis. Loss of p34cdc2 kinase activity is not seen until the steady-state level of p34cdc2 declines, suggesting that the intra-cellular signals induced by TGF beta 1 affect p34cdc2 at the level of expression, rather than by altering the posttranslational modifications of p34cdc2 that regulate its kinase activity. Infection with adenovirus expressing either wild-type E1A or a mutant E1A (pm928) defective for pRB binding alleviated TGF beta 1-mediated suppression of DNA synthesis, indicating that E1A does not need to bind pRB physically to keep cell growth-suppressing functions from being activated by TGF beta 1. The E1A.928 mutant virus is able to maintain p34cdc2 expression and kinase activity, as well as pRB phosphorylation in the presence of TGF beta 1, which may account for its ability to maintain cell cycle activity without directly sequestering pRB. Overall our results suggest that TGF beta 1 acts by signaling changes at the level of control of G1 gene expression, not at the level of posttranslational modification of p34cdc2 or its substrates.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3