Lens Connexins α3Cx46 and α8Cx50 Interact with Zonula Occludens Protein-1 (ZO-1)

Author:

Nielsen Peter A.1,Baruch Amos1,Shestopalov Valery I.2,Giepmans Ben N.G.3,Dunia Irene4,Benedetti E. Lucio4,Kumar Nalin M.5

Affiliation:

1. Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA

2. Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA

3. Division of Cellular Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands

4. Institut Jacques Monod, CNRS-Universités Paris 6-Paris 7, Paris, France

5. Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois 60612, USA

Abstract

Connexin α1Cx43 has previously been shown to bind to the PDZ domain–containing protein ZO-1. The similarity of the carboxyl termini of this connexin and the lens fiber connexins α3Cx46 and α8Cx50 suggested that these connexins may also interact with ZO-1. ZO-1 was shown to be highly expressed in mouse lenses. Colocalization of ZO-1 with α3Cx46 and α8Cx50 connexins in fiber cells was demonstrated by immunofluorescence and by fracture-labeling electron microscopy but showed regional variations throughout the lens. ZO-1 was found to coimmunoprecipitate with α3Cx46 and α8Cx50, and pull-down experiments showed that the second PDZ domain of ZO-1 was involved in this interaction. Transiently expressed α3Cx46 and α8Cx50 connexins lacking the COOH-terminal residues did not bind to the second PDZ domain but still formed structures resembling gap junctions by immunofluorescence. These results indicate that ZO-1 interacts with lens fiber connexins α3Cx46 and α8Cx50 in a manner similar to that previously described for α1Cx43. The spatial variation in the interaction of ZO-1 with lens gap junctions is intriguing and is suggestive of multiple dynamic roles for this association.

Publisher

American Society for Cell Biology (ASCB)

Cited by 101 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3