Transmembrane control of cadherin-mediated cell adhesion: a 94 kDa protein functionally associated with a specific region of the cytoplasmic domain of E-cadherin.

Author:

Nagafuchi A1,Takeichi M1

Affiliation:

1. Department of Biophysics, Faculty of Science, Kyoto University, Japan.

Abstract

Cadherins are a family of transmembrane glycoproteins which play a key role in Ca(2+)-dependent cell-cell adhesion. Cytoplasmic domains of these molecules are anchored to the cell cytoskeleton and are required for cadherin function. To elucidate how the function of cadherins is controlled through their cytoplasmic domains, we deleted five different regions in the cytoplasmic domain of E-cadherin. After transfecting L cells with cDNA encoding the mutant polypeptides, we assayed aggregating activity of these transfectants; all these mutant proteins were shown to have an extracellular domain with normal Ca(2+)-sensitivity and molecular weight. Two mutant polypeptides with deletions in the carboxy half of the cytoplasmic domain, however, did not promote cell-cell adhesion and had also lost the ability to bind to the cytoskeleton, whereas the mutant molecules with deletions of other regions retained the ability to promote cell adhesion and to anchor to the cytoskeleton. Thus, the cytoplasmic domain contains a subdomain which was involved in the cell adhesion and cytoskeleton-binding functions. When E-cadherin in F9 cells or in L cells transfected with wild-type or functional mutant cadherin polypeptides was solubilized with nonionic detergents and immunoprecipitated, two additional 94 and 102 kDa components were coprecipitated. The 94 kDa component, however, was not detected in the immunoprecipitates from cells expressing the mutant cadherins which had lost the adhesive function. These results suggest that the interaction of the carboxy half of the cytoplasmic domain with the 94 kDa component regulates the cell binding function of the extracellular domain of E-cadherin.

Publisher

American Society for Cell Biology (ASCB)

Subject

General Medicine

Cited by 406 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3