A lightweight metastructure for simultaneous low-frequency broadband sound absorption and vibration isolation

Author:

Gu Tianyu1,Wen Zhihui1ORCID,He Liangshu1,Yu Minle1,Li Yong2ORCID,Li Yan1,Jin Yabin1ORCID

Affiliation:

1. School of Aerospace Engineering and Applied Mechanics, Tongji University 1 , 200092 Shanghai, China

2. Institute of Acoustics, School of Physics Science and Engineering, Tongji University 2 , 200092 Shanghai, China

Abstract

We theoretically, numerically, and experimentally study a lightweight metastructure that can simultaneously reduce vibration and noise in a broad low-frequency range. We introduce spiral slits and micro-perforations in the panel and core plate of a face-centered cubic sandwich structure, respectively. A bottom-up acoustic impedance theory is developed to describe the impedance of a single unit cell. Broadband low-frequency sound absorption is achieved for a 3 × 3 supercell via reinforcement learning optimization. The resonant coupling of the upper spiral panel and the lower panel of the unit can form a wide hybridized bandgap for flexural waves, which is further validated for vibration isolation with a one-dimensional supercell. The proposed multifunctional metastructure provides a new route to design lightweight load-bearing structures with noise and vibration reduction performance for potential applications such as aerospace engineering and transportation vehicles, among others.

Funder

National Natural Science Foundation of China

China Association for Science and Technology

the Shanghai Science and Technology Committee

Program for Professor of Special Appointmentat Shanghai Institutions of Higher Learning

Fundamental Research Funds for the Central Universities

Key Laboratory for AI-aided Airworthiness of Civil Aircraft Structures

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3