An acoustic model of a multiple-channel cochlear implant

Author:

Blamey P. J.1,Dowell R. C.1,Tong Y. C.1,Clark G. M.1

Affiliation:

1. Department of Otolaryngology, University of Melbourne, The Royal Victorian Eye and Ear Hospital, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia

Abstract

A set of bandpass filtered, pulsed noise stimuli presented to three normally hearing subjects was found to have psychophysical properties similar to those of a set of pulsed electrical stimuli presented to two cochlear implant patients. Identical procedures were used to compare the performances of the two groups of subjects in the following tasks: (a) pulse rate difference limen measurements, (b) pitch scaling for stimuli differing in pulse rate, (c) pitch scaling and categorization of stimuli differing in filter frequency or electrode position, and (d) similarity judgments of stimuli differing in pulse rate and filter frequency or electrode position. By choosing the parameters of the acoustic stimuli appropriately, a high level of agreement between the two sets of results was achieved. Electrical stimuli on electrodes at different sites in the cochlea were matched with pulsed noise passed through bandpass filters with different center frequencies. Matching was achieved for equal electrical and acoustic pulse rates.

Publisher

Acoustical Society of America (ASA)

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3