Classification of indexical and segmental features of human speech using low- and high-frequency energy

Author:

Donai Jeremy J.1,Paschall D. Dwayne2,Haider Saad3

Affiliation:

1. Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center 1 , Lubbock, Texas 79430, USA

2. Predictive Market Analytics 2 , Frisco, Texas 75035, USA

3. Department of Electrical and Computer Engineering, Texas Tech University 3 , Lubbock, Texas 79409, USA

Abstract

The high-frequency region (above 4–5 kHz) of the speech spectrum has received substantial research attention over the previous decade, with a host of studies documenting the presence of important and useful information in this region. The purpose of the current experiment was to compare the presence of indexical and segmental information in the low- and high-frequency region of speech (below and above 4 kHz) and to determine the extent to which information from these regions can be used in a machine learning framework to correctly classify indexical and segmental aspects of the speech signal. Naturally produced vowel segments produced by ten male and ten female talkers were used as input to a temporal dictionary ensemble classification model in unfiltered, low-pass filtered (below 4 kHz), and high-pass filtered (above 4 kHz) conditions. Classification performance in the unfiltered and low-pass filtered conditions was approximately 90% or better for vowel categorization, talker sex, and individual talker identity tasks. Classification performance for high-pass filtered signals composed of energy above 4 kHz was well above chance for the same tasks. For several classification tasks (i.e., talker sex and talker identity), high-pass filtering had minimal effect on classification performance, suggesting the preservation of indexical information above 4 kHz.

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3