Affiliation:
1. School of Computer Science and Information Engineering, Hefei University of Technology , Hefei 230009, China
Abstract
Recently, acoustic communication employing orbital angular momentum (OAM) opens another avenue for efficient data transmission in aquatic environments. Current topological charge (TC) detection of OAM beams relies on the orthogonality among different-order OAM beams. However, such strategy requires measurements of the complete azimuthal acoustic pressure, which inevitably reduces the efficiency and increases the bit error rate (BER). To address these challenges, this study proposes a modified dynamic modal decomposition (DMD) method by partially sampling the acoustic field for precise TC detection. Numerical simulations confirm the accuracy of this approach in extracting single or multiple TCs magnitudes within a partially sampled acoustic field. We theoretically compare the performance of the modified DMD approach with conventional orthogonal decoding method. Simulation results indicate that our modified DMD scheme exhibits lower BER under the same noise interference and is more robust to the array misalignment. This research introduces an efficient demodulation solution for acoustic OAM communication, offering potential benefits for simplifying receiver array design and enhancing long-distance underwater data transmission.
Funder
National Natural Science Foundation of China
Publisher
Acoustical Society of America (ASA)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献