Geoacoustic inversion using Bayesian optimization with a Gaussian process surrogate model

Author:

Jenkins William F.1ORCID,Gerstoft Peter1ORCID,Park Yongsung1ORCID

Affiliation:

1. Scripps Institution of Oceanography, University of California San Diego , La Jolla, California 92093, USA

Abstract

Geoacoustic inversion can be a computationally expensive task in high-dimensional parameter spaces, typically requiring thousands of forward model evaluations to estimate the geoacoustic environment. We demonstrate Bayesian optimization (BO), an efficient global optimization method capable of estimating geoacoustic parameters in seven-dimensional space within 100 evaluations instead of thousands. BO iteratively searches parameter space for the global optimum of an objective function, defined in this study as the Bartlett power. Each step consists of fitting a Gaussian process surrogate model to observed data and then choosing a new point to evaluate using a heuristic acquisition function. The ideal acquisition function balances exploration of the parameter space in regions with high uncertainty with exploitation of high-performing regions. Three acquisition functions are evaluated: upper confidence bound, expected improvement (EI), and logarithmically transformed EI. BO is demonstrated for both simulated and experimental data from a shallow-water environment and rapidly estimates optimal parameters while yielding results comparable to differential evolution optimization.

Funder

Office of Naval Research

Publisher

Acoustical Society of America (ASA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3