Modeling impedance boundary conditions and acoustic barriers using the immersed boundary method: The one-dimensional case

Author:

Bilbao Stefan1ORCID

Affiliation:

1. Acoustics and Audio Group, University of Edinburgh , Room 2.10 Alison House, 12 Nicolson Square Edinburgh, EH8 9DF, United Kingdom

Abstract

Immersed boundary methods are heavily used in computational fluid dynamics, as an alternative to volumetric meshing, when a problem contains irregular geometric features. In wave-based architectural and room acoustics, the dynamics are simplified, but boundary conditions and acoustic barriers are usually described in terms of frequency-dependent impedance and transmittance functions. In this article, a formulation of the immersed boundary method is developed in the informative special case of one-dimensional linear acoustics. It relies on dual driving terms applied to the conservation of mass and momentum equations separately and is directly tunable against boundary impedances and barrier transmittances. It is shown how the driving terms may be combined to model either an impermeable frequency-dependent boundary condition or a barrier with a given transmittance. An explicit time-domain numerical method of finite-difference time-domain type is presented, and it is shown how the immersed boundary condition may be included, at minimal additional computational cost. Special attention is paid to the discrete approximation of the Dirac delta function, necessary in immersed boundary methods, as well as the discretisation strategy for frequency-dependent boundary and barrier conditions. Numerical results are presented. A complete derivation of numerical stability conditions for this immersed boundary method appears in an appendix.

Funder

none

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3