Input compensation of dolphin and sea lion auditory brainstem responses using frequency-modulated up-chirps

Author:

Mulsow Jason1ORCID,Finneran James J.2ORCID,Strahan Madelyn G.1ORCID,Houser Dorian S.1ORCID,Burkard Robert F.3

Affiliation:

1. National Marine Mammal Foundation 1 , 2240 Shelter Island Drive #200, San Diego, California 92106, USA

2. U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific Code 56710 2 , 53560 Hull Street, San Diego, California 92152, USA

3. Department of Rehabilitation Science, University at Buffalo 3 , 626 Kimball Tower, Buffalo, New York 14214, USA

Abstract

Frequency-modulated “chirp” stimuli that offset cochlear dispersion (i.e., input compensation) have shown promise for increasing auditory brainstem response (ABR) amplitudes relative to traditional sound stimuli. To enhance ABR methods with marine mammal species known or suspected to have low ABR signal-to-noise ratios, the present study examined the effects of broadband chirp sweep rate and level on ABR amplitude in bottlenose dolphins and California sea lions. “Optimal” chirps were designed based on previous estimates of cochlear traveling wave speeds (using high-pass subtractive masking methods) in these species. Optimal chirps increased ABR peak amplitudes by compensating for cochlear dispersion; however, chirps with similar (or higher) frequency-modulation rates produced comparable results. The optimal chirps generally increased ABR amplitudes relative to noisebursts as threshold was approached, although this was more obvious when sound pressure level was used to equate stimulus levels (as opposed to total energy). Chirps provided progressively less ABR amplitude gain (relative to noisebursts) as stimulus level increased and produced smaller ABRs at the highest levels tested in dolphins. Although it was previously hypothesized that chirps would provide larger gains in sea lions than dolphins—due to the lower traveling wave speed in the former—no such pattern was observed.

Funder

US Navy Living Marine Resources

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3