Exploring the limits of virtual source localization with amplitude panning on a flat panel with actuator array: Implications for future research

Author:

Yu Ziying1,Zhu Qiaoxi2,Wu Ming1,Yang Jun1ORCID

Affiliation:

1. Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences 1 , Beijing, 100190, China

2. Centre for Audio, Acoustics and Vibration, Faculty of Engineering and IT, University of Technology Sydney 2 , Sydney, New South Wales 2007, Australia

Abstract

Immersive and spatial sound reproduction has been widely studied using loudspeaker arrays. However, flat-panel loudspeakers that utilize thin flat panels with force actuators are a promising alternative to traditional coaxial loudspeakers for practical applications, with benefits in low-visual profiles and diffuse radiation. Literature has addressed the sound quality and applications of flat-panel loudspeakers in three-dimensional sound reproduction, such as wave field synthesis and sound zones. This paper revisits the spatial sound perception of flat-panel loudspeakers, specifically the localization mismatch between the perceived and desired sound directions when using amplitude panning. Subjective tests in an anechoic chamber with 24 subjects result in the mean azimuth direction mismatch within ±6.0° and the mean elevation mismatch within ±10.0°. The experimental results show that the virtual source created by amplitude panning over a flat-panel loudspeaker still achieves spatial localization accuracy close to that of a real sound source, despite not using complex algorithms or acoustic transfer function information. The findings of this study establish a benchmark for virtual source localization in spatial sound reproduction using flat-panel loudspeakers, which can serve as a starting point for future research and optimization of algorithms.

Funder

Beijing Natural Science Foundation

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3