Objective intelligibility measurement of reverberant vocoded speech for normal-hearing listeners: Towards facilitating the development of speech enhancement algorithms for cochlear implants

Author:

Shahidi Lidea K.1,Collins Leslie M.1,Mainsah Boyla O.1

Affiliation:

1. Department of Electrical and Computer Engineering, Duke University , Durham, North Carolina 27701, USA

Abstract

Cochlear implant (CI) recipients often struggle to understand speech in reverberant environments. Speech enhancement algorithms could restore speech perception for CI listeners by removing reverberant artifacts from the CI stimulation pattern. Listening studies, either with cochlear-implant recipients or normal-hearing (NH) listeners using a CI acoustic model, provide a benchmark for speech intelligibility improvements conferred by the enhancement algorithm but are costly and time consuming. To reduce the associated costs during algorithm development, speech intelligibility could be estimated offline using objective intelligibility measures. Previous evaluations of objective measures that considered CIs primarily assessed the combined impact of noise and reverberation and employed highly accurate enhancement algorithms. To facilitate the development of enhancement algorithms, we evaluate twelve objective measures in reverberant-only conditions characterized by a gradual reduction of reverberant artifacts, simulating the performance of an enhancement algorithm during development. Measures are validated against the performance of NH listeners using a CI acoustic model. To enhance compatibility with reverberant CI-processed signals, measure performance was assessed after modifying the reference signal and spectral filterbank. Measures leveraging the speech-to-reverberant ratio, cepstral distance and, after modifying the reference or filterbank, envelope correlation are strong predictors of intelligibility for reverberant CI-processed speech.

Funder

Graduate School, Duke University

National Institute on Deafness and Other Communication Disorders

Publisher

Acoustical Society of America (ASA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3