Intermittent hypoxia exposure at sea level improves functional capacity (6MWT) at high altitude

Author:

Newmei Masan Kambo1,Reddy Maramreddy Prasanna Kumar1,Dass Deepak1,Singh Vivek1,Naik Swarup1,Bhaumik Gopinath1

Affiliation:

1. Department of Applied Physiology, Defense Institute of Physiology and Allied Science, Defence Research and Development Organisation, New Delhi, Delhi, India,

Abstract

Objectives: Our primary objective is to observe whether acclimatisation is elicited by the intermittent hypoxic exposure (IHE) protocol. For this, we have utilised performance in a 6-min walk test (6MWT) as a tool to assess physiological responses to high altitude (HA) both in control and IHE-exposed groups, respectively. Materials and Methods: The study was a prospective cohort study conducted on Indian army volunteers (n = 57) and they were divided into two groups, a control group (CG) and an experimental group (EG). At the sea level, a baseline study was carried out on barometric pressure. IHE was performed at sea level in the normobaric hypoxia chamber (low fraction of inspired oxygen [FiO2], at normal barometric pressure, 740 mmHg), in which the FiO2 of the chamber was artificially decreased using O2-filtering membranes. The oxygen percentage was constantly maintained at 12%-13%. After recording the baseline, the subjects were exposed to a normobaric hypoxia chamber at 12%-13% FiO2 (altitude – equivalent to 4350 m Approx). Heart rate and blood pressure (BP) were recorded with a battery-operated portable BP monitor (OMRON) at both locations. A finger pulse oximeter probe was set on the right index finger to measure the resting oxygen saturation (SpO2) level (Model MU 300). Incidence of acute mountain sickness (AMS) was scored with the help of the standard Lake Louise questionnaire (LLS). Total LLS scores more than >3 (range 0–15) were considered AMS. Results: EG individuals that went through IHE performed better at 6MWT at Stage I (P = 0.03). EG also had better SpO2, levels as compared to CG (P = 0.00) at Stage II (P = 0.03). Furthermore, there was a significant difference in the Borg’s Scale between CG and EG. The Delta SpO2 of EG was better as compared to CG in all stages, albeit not significant (P = 0.07). There was a significant difference between IHE and CG groups, and CG was at an increased risk for lower SpO2 (8.00 [1.21–52.60], P = 0.03). Conclusion: The findings elucidate the benefits of IHE in rapid acclimatisation, and it contributed to better distance covered as shown by 6MWT as well and reduces hypoxic incidents in HA.

Publisher

Scientific Scholar

Subject

Physiology (medical),Pharmacology,Physiology

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3