Efficient economic energy scheduling in smart cities using distributed energy resources

Author:

Manzoor Awais,Akram WaseemORCID,Judge Malik Ali,Khan Naveed,Khattak Hasan AliORCID

Abstract

Machine learning provides a powerful mechanism to enhance the capabilities of the next generation of smart cities. Whether healthcare monitoring, building automation, energy management, or traffic management, use cases of capability enhancement using machine learning have been significant in recent years. This paper proposes a modeling approach for scheduling energy consumption within smart homes based on a non-dominated sorting genetic algorithm (NSGA). Distributed energy management plays a significant role in reducing energy consumption and carbon emissions as compared to centralized energy generation. Multiple energy consumers can schedule energy-consuming household tasks using home energy management systems in coordination to reduce economic costs and greenhouse gas emissions. In this work, such a home energy management system is used to collect energy price data from the electricity company via an embedded device-enabled smart meter and schedule energy consumption tasks based on this data. We schedule daily power consumption tasks using a multiobjective optimization method that considers environmental and economic sustainability. Two conflicting objectives are minimizing daily energy costs and reducing carbon dioxide emissions. Based on electricity tariffs, CO2 intensity, and the window of time during which electricity is consumed, energy consumption tasks involving distributed energy resources (DERs) and electricity consumption are scheduled. The proposed model is implemented in a model smart building consisting of 30 homes under 3 pricing schemes. The energy demand is spread out across a 24-hour period for points A2–A4 under CPP-PDC, which produces a more flattened curve than point A1. There are competing goals between electricity costs and carbon footprints at points B2–B4 under the CPP-PDC, where electricity demand is set between 20:00 and 0:00. Power grids’ peak energy demand is comparatively low when scheduling under CPP-PDC for points A5 and B5. Reducing carbon emissions, CPP-PDC reduces the maximum demand for electricity from the grid and the overall demand above the predetermined level. The maximum power demand from the grid is minimized for points A5 and B5, reducing up to 22% compared to A2. The proposed method minimizes both energy costs as well as CO2 emissions. A Pareto curve illustrates the trade-off between cost and CO2 emissions.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3