Multiple distributed generators islanding detection using GBDT-JS techniques

Author:

Goriparthy Murali Krishna,Balakrishnan Geethalakshmi

Abstract

Photovoltaic arrays and wind Distributed Generators (DG) have become integral to our renewable energy landscape. However, when a DG disconnects from the grid, the risk of islanding arises, necessitating detection within the stringent of two-second timeframe mandated by IEEE standards. Machine-level algorithms play a pivotal role in enhancing power system reliability and safety by swiftly identifying and isolating isolated segments, thereby preventing potential hazards and ensuring efficient grid operation. This study introduces an algorithm-based islanding detection approach for distributed generating systems employing both Solar Photo Voltaic (SPV) and wind systems. The GBDT-JS algorithm, a combination of Gradient Boosting Decision Trees and Jelly Fish Techniques, emerges as an intelligent solution. The focus of this technique is based on the Rate of Change in Phase Angle (RCPP) at the target DG position, offering a characterized approach to islanding detection. In addressing the major difficulties and challenges, the GBDT-JS method proves instrumental in categorizing islanding situations and grid disturbances. This classification aids in determining the system’s adoptability based on various loading and switching capabilities. The achievements in overcoming these challenges lie in the algorithm’s ability to provide a comprehensive solution, ensuring the reliability and safety of distributed generating systems.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3