Role of Bacillus thuringiensis Toxin Domains in Toxicity and Receptor Binding in the Diamondback Moth

Author:

Ballester V.1,Granero F.1,de Maagd R. A.2,Bosch D.2,Ménsua J. L.1,Ferré J.1

Affiliation:

1. Department of Genetics, Universitat de València, 46100-Burjassot (València), Spain,1 and

2. DLO-Centre for Plant Breeding and Reproduction Research, 6700 AA Wageningen, The Netherlands2

Abstract

ABSTRACT The toxic fragment of Bacillus thuringiensis crystal proteins consists of three distinct structural domains. There is evidence that domain I is involved in pore formation and that domain II is involved in receptor binding and specificity. It has been found that, in some cases, domain III is also important in determining specificity. Furthermore, involvement of domain III in binding has also been reported recently. To investigate the role of toxin domains in the diamondback moth ( Plutella xylostella ), we used hybrid toxins with domain III substitutions among Cry1C, Cry1E, and Cry1Ab. Neither Cry1E nor G27 (a hybrid with domains I and II from Cry1E and domain III from Cry1C) was toxic, whereas Cry1C and F26 (the reciprocal hybrid) were equally toxic. H04 (a hybrid with domains I and II from Cry1Ab and domain III from Cry1C) showed toxicity that was of a similar level as that of Cry1Ab and significantly higher than that of Cry1C. Binding assays with 125 I-Cry1C showed that Cry1C and F26 competed for the same binding sites on midgut membrane vesicles, whereas Cry1E, G27, and H04 did not bind to these sites. Our results show that, in contrast to findings in other insects for the toxins and hybrids used here, toxin specificity as well as specificity of binding to membrane vesicles in the diamondback moth is mediated by domain II (and/or I) and not by domain III.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3