Induction of antigen-specific antibodies in vaginal secretions by using a nontoxic mutant of heat-labile enterotoxin as a mucosal adjuvant

Author:

Di Tommaso A1,Saletti G1,Pizza M1,Rappuoli R1,Dougan G1,Abrignani S1,Douce G1,De Magistris M T1

Affiliation:

1. Immunobiology Research Institute Siena, Italy.

Abstract

Immunization of the female reproductive tract is important for protection against sexually transmitted diseases and other pathogens of the reproductive tract. However, intravaginal immunization with soluble antigens generally does not induce high levels of secretory immunoglobulin A (IgA). We recently developed safe mucosal adjuvants by genetically detoxifying Escherichia coli heat-labile enterotoxin, a molecule with a strong mucosal adjuvant activity, and here we describe the use of the nontoxic mutant LTK63 to induce a response in the mouse vagina against ovalbumin (Ova). We compared intravaginal and intranasal routes of immunization for induction of systemic and vaginal responses against LTK63 and Ova. We found that LTK63 is a potent mucosal immunogen when given by either the intravaginal or intranasal route. It induces a strong systemic antibody response and IgG and long-lasting IgA in the vagina. The appearance of vaginal IgA is delayed in the intranasally immunized mice, but the levels of vaginal anti-LTK63 IgA after repeated immunizations are higher in the intranasally immunized mice than in the intravaginally immunized mice. LTK63 also acts as a mucosal adjuvant, inducing a serum response against Ova, when given by both the intravaginal and intranasal routes. However, vaginal IgA against Ova is stimulated more efficiently when LTK63 and antigen are given intranasally. In conclusion, our results demonstrate that LTK63 can be used as a mucosal adjuvant to induce antigen-specific antibodies in vaginal secretions and show that the intranasal route of immunization is the most effective for this purpose.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 199 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3