Inhibitory Effects of HIV-2 Vpx on Replication of HIV-1

Author:

Mahdi Mohamed1,Szojka Zsófia1,Mótyán János András1,Tőzsér József1

Affiliation:

1. Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary

Abstract

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) and HIV-2 share a striking genomic resemblance; however, variability in the genetic sequence accounts for the presence of unique accessory genes, such as the viral protein X ( vpx ) gene in HIV-2. Dual infection with both viruses has long been described in the literature, yet the molecular mechanism of how dually infected patients tend to do better than those who are monoinfected with HIV-1 has not yet been explored. We hypothesized that in addition to extracellular mechanisms, an HIV-2 accessory gene is the culprit, and interference at the viral accessory/regulatory protein level is perhaps responsible for the attenuated pathogenicity of HIV-1 observed in dually infected patients. Following simulation of dual infection in cell culture experiments, we found that pretransduction of cells with HIV-2 significantly protects against HIV-1 transduction. Importantly, we have found that this dampening of the infectivity of HIV-1 was a result of interviral interference carried out by viral protein X of HIV-2, resulting in a severe hindrance to the replication dynamics of HIV-1, influencing both its early and late phases of the viral life cycle. Our findings shed light on potential intracellular interactions between the two viruses and broaden our understanding of the observed clinical spectrum in dually infected patients, highlighting HIV-2 Vpx as a potential candidate worth exploring in the fight against HIV-1. IMPORTANCE Dual infection with human immunodeficiency virus types 1 and 2 is relatively common in areas of endemicity. For as-yet-unclarified reasons, patients who are dually infected were shown to have lower viral loads and generally a lower rate of progression to AIDS than those who are monoinfected. We aimed to explore dual infection in cell culture, to elucidate possible mechanisms by which HIV-2 may be able to exert such an effect. Our results indicate that on the cellular level, pretransduction of cells with HIV-2 significantly protects against HIV-1 transduction, which was found to be a result of interviral interference carried out by viral protein X of HIV-2. These findings broaden our knowledge of interviral interactions on the cellular level and may provide an explanation for the decreased pathogenicity of HIV-1 in dually infected patients, highlighting HIV-2 Vpx as a potential candidate worth exploring in the fight against HIV.

Funder

Országos Tudományos Kutatási Alapprogramok

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3