Coproduction of Acetaldehyde and Hydrogen during Glucose Fermentation by Escherichia coli

Author:

Zhu Huilin1,Gonzalez Ramon2,Bobik Thomas A.1

Affiliation:

1. Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011

2. Departments of Chemical and Biomolecular Engineering and Bioengineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005

Abstract

ABSTRACT Escherichia coli K-12 strain MG1655 was engineered to coproduce acetaldehyde and hydrogen during glucose fermentation by the use of exogenous acetyl-coenzyme A (acetyl-CoA) reductase (for the conversion of acetyl-CoA to acetaldehyde) and the native formate hydrogen lyase. A putative acetaldehyde dehydrogenase/acetyl-CoA reductase from Salmonella enterica (SeEutE) was cloned, produced at high levels, and purified by nickel affinity chromatography. In vitro assays showed that this enzyme had both acetaldehyde dehydrogenase activity (68.07 ± 1.63 μmol min −1 mg −1 ) and the desired acetyl-CoA reductase activity (49.23 ± 2.88 μmol min −1 mg −1 ). The eutE gene was engineered into an E. coli mutant lacking native glucose fermentation pathways (Δ adhE , Δ ackA - pta , Δ ldhA , and Δ frdC ). The engineered strain (ZH88) produced 4.91 ± 0.29 mM acetaldehyde while consuming 11.05 mM glucose but also produced 6.44 ± 0.26 mM ethanol. Studies showed that ethanol was produced by an unknown alcohol dehydrogenase(s) that converted the acetaldehyde produced by SeEutE to ethanol. Allyl alcohol was used to select for mutants with reduced alcohol dehydrogenase activity. Three allyl alcohol-resistant mutants were isolated; all produced more acetaldehyde and less ethanol than ZH88. It was also found that modifying the growth medium by adding 1 g of yeast extract/liter and lowering the pH to 6.0 further increased the coproduction of acetaldehyde and hydrogen. Under optimal conditions, strain ZH136 converted glucose to acetaldehyde and hydrogen in a 1:1 ratio with a specific acetaldehyde production rate of 0.68 ± 0.20 g h −1 g −1 dry cell weight and at 86% of the maximum theoretical yield. This specific production rate is the highest reported thus far and is promising for industrial application. The possibility of a more efficient “no-distill” ethanol fermentation procedure based on the coproduction of acetaldehyde and hydrogen is discussed.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3