Human Cytomegalovirus Elicits a Coordinated Cellular Antiviral Response via Envelope Glycoprotein B

Author:

Boehme Karl W.1,Singh Jasbir1,Perry Stuart T.1,Compton Teresa1

Affiliation:

1. McArdle Laboratory for Cancer Research, University of Wisconsin—Madison Medical School, University of Wisconsin—Madison, Madison, Wisconsin 53706

Abstract

ABSTRACT Previous studies have shown that human cytomegalovirus (CMV) is a potent elicitor of interferon-stimulated gene (ISG) expression. Induction of the interferon pathway does not require replication-competent virus, and envelope glycoprotein B (gB) from CMV is a viral structural component that can directly induce transcription of ISGs. Here we extend these earlier findings by defining the consequences of inducing the interferon pathway. We found that cells respond to CMV or soluble gB by establishing a functional antiviral state within cell types critical in CMV biology, such as fibroblasts and endothelial cells. We have also discovered new insights into the mechanism by which the pathway is initiated. Interferon regulatory factor 3 (IRF3), a key transcriptional regulator of cellular interferon responses, is activated by CMV virions and soluble gB. Thus, IRF3 becomes activated via “outside-in” signal transduction events. This is a novel mechanism of activation of this key transcription factor by viruses. In comparison to soluble gB (gB 1-750 ), which comprises the entire ectodomain of gB, a truncation mutant encompassing only the amino-terminal region of gB (gB 1-460 ) was markedly less effective at inducing antiviral responses. This indicates that the region of gB from residues 461 to 750 is important for initiation of the antiviral response. In addition, CMV and gB establish an antiviral state in alpha/beta interferon null cells, illustrating that primary induction of ISGs by CMV and gB is sufficient to establish the antiviral response and that interferon secretion is not necessary for the antiviral effect. Taken together, our findings reveal that CMV initiates a coordinated antiviral response through contact between gB and an as-yet-unidentified cell surface receptor(s).

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3