Dendritic Cell-Specific Antigen Delivery by Coronavirus Vaccine Vectors Induces Long-Lasting Protective Antiviral and Antitumor Immunity

Author:

Cervantes-Barragan Luisa12,Züst Roland1,Maier Reinhard1,Sierro Sophie3,Janda Jozef3,Levy Frederic3,Speiser Daniel3,Romero Pedro3,Rohrlich Pierre-Simon456,Ludewig Burkhard17,Thiel Volker17

Affiliation:

1. Institute of Immunobiology, Kantonal Hospital St. Gallen, St. Gallen, Switzerland;

2. Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, México City, México;

3. Ludwig Institute for Cancer Research, Lausanne, Switzerland;

4. INSERM U645-IFR133, Besançon, France;

5. University of Besançon, Besançon, France;

6. CHU Besançon, Service de Pédiatrie, Besançon, France; and

7. VetSuisse Faculty, University of Zurich, Zurich, Switzerland

Abstract

ABSTRACT Efficient vaccination against infectious agents and tumors depends on specific antigen targeting to dendritic cells (DCs). We report here that biosafe coronavirus-based vaccine vectors facilitate delivery of multiple antigens and immunostimulatory cytokines to professional antigen-presenting cells in vitro and in vivo . Vaccine vectors based on heavily attenuated murine coronavirus genomes were generated to express epitopes from the lymphocytic choriomeningitis virus glycoprotein, or human Melan-A, in combination with the immunostimulatory cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). These vectors selectively targeted DCs in vitro and in vivo resulting in vector-mediated antigen expression and efficient maturation of DCs. Single application of only low vector doses elicited strong and long-lasting cytotoxic T-cell responses, providing protective antiviral and antitumor immunity. Furthermore, human DCs transduced with Melan-A-recombinant human coronavirus 229E efficiently activated tumor-specific CD8 + T cells. Taken together, this novel vaccine platform is well suited to deliver antigens and immunostimulatory cytokines to DCs and to initiate and maintain protective immunity. IMPORTANCE Vaccination against infectious agents has protected many individuals from severe disease. In addition, prophylactic and, most likely, also therapeutic vaccination against tumors will save millions from metastatic disease. This study describes a novel vaccine approach that facilitates delivery of viral or tumor antigens to dendritic cells in vivo . Concomitant immunostimulation via the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) was achieved through delivery by the same viral vector. Single immunization with only low doses of coronavirus-based vaccine vectors was sufficient to elicit (i) vigorous expansion and optimal differentiation of CD8 + T cells, (ii) protective and long-lasting antiviral immunity, and (iii) prophylactic and therapeutic tumor immunity. Moreover, highly efficient antigen delivery to human DCs with recombinant human coronavirus 229E and specific stimulation of human CD8 + T cells revealed that this approach is exceptionally well suited for translation into human vaccine studies.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3