Increased virulence of a mouse-adapted variant of influenza A/FM/1/47 virus is controlled by mutations in genome segments 4, 5, 7, and 8

Author:

Brown E G1

Affiliation:

1. Laboratory Centre for Disease Control, Health and Welfare Canada, Ottawa, Ontario.

Abstract

To cause disease, influenza virus must possess several genetically determined abilities that mediate stages in pathogenesis. The virulent mouse-adapted variant A/FM/1/47-MA (FM-MA), derived from the avirulent A/FM/1/47 (FM) strain, had acquired mutations in genes that control virulence. The purpose of this study was to identify those genes that had mutated to result in increased virulence and to obtain viruses that differed in virulence because of differences in individual genome segments. The genes that had mutated to increase virulence were initially identified by genetic analysis of reassortants obtained by crossing FM-MA with the avirulent strain A/HK/1/68 (HK). FM-MA genome segments 4, 5, 7, and 8 were significantly associated with virulence, as determined by using the Wilcoxon ranked sum analysis. The role of FM-MA segments 4, 7, and 8 was confirmed by reintroduction of these genes into the parental strain, which also provided virus strains that differed in virulence because of mutations in individual genome segments. Segments 4, 7, and 8 were responsible for a 10(3.6)-fold increase in virulence that was proportioned 10(2.2)-, 10(0.7)-, and 10(0.8)-fold, respectively. The role of segment 5 could not be confirmed on transfer back into the parental strain because of reversion during preparation of such reassortants. The incidence of reversion was shown to be significantly associated with culturing of FM-MA in chicken embryo cells but was not associated with growth in MDCK cells. The genetic analysis of FM-MA suggests that adaptation to increased virulence is an incremental process that involves the acquisition of mutations in multiple genes, each of which plays an individual role in pathogenesis. The structural and functional properties of segments 4, 7, and 8 that control the virulence of FM-MA can now be determined by using viruses that differ in virulence because of mutations in these individual genome segments.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference43 articles.

1. Correlation of influenza A virus nucleoprotein genes with host species;Bean W. J.;Virology,1984

2. Adaptation of influenza virus to mice. Changes in the growth curve of an A prime strain of influenza virus;Briody B. A.;J. Immunol.,1955

3. Genetic variants of influenza A/Taiwan/l/86 cocirculating in Canada during the winter of 1986 to 1987;Brown E. G.;J. Clin. Microbiol.,1988

4. Genetic composition and virulence of influenza virus: differences in facets of virulence in ferrets between two pairs of recombinants with RNA segments of the same parental origin;Campbell D.;J. Gen. Virol.,1982

5. Identification of sequence changes in the coldadapted, live attenuated influenza vaccine strain, A/Ann Arbor/ 6/60 (H2N2);Cox N. J.;Virology,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3