The Alternative Sigma Factor SigB Is Required for the Pathogenicity of Bacillus thuringiensis

Author:

Henry Stéphanie,Lereclus DidierORCID,Slamti LeylaORCID

Abstract

ABSTRACT To adapt to changing and potentially hostile environments, bacteria can activate the transcription of genes under the control of alternative sigma factors, such as SigB, a master regulator of the general stress response in several Gram-positive species. Bacillus thuringiensis is a Gram-positive spore-forming invertebrate pathogen whose life cycle includes a variety of environments, including plants and the insect hemocoel or gut. Here, we assessed the role of SigB during the infectious cycle of B. thuringiensis in a Galleria mellonella insect model. We used a fluorescent reporter coupled to flow cytometry and showed that SigB was activated in vivo. We also showed that the pathogenicity of the ΔsigB mutant was severely affected when inoculated via the oral route, suggesting that SigB is critical for B. thuringiensis adaptation to the gut environment of the insect. We could not detect an effect of the sigB deletion on the survival of the bacteria or on their sporulation efficiency in the cadavers. However, the gene encoding the pleiotropic regulator Spo0A was upregulated in the ΔsigB mutant cells during the infectious process. IMPORTANCE Pathogenic bacteria often need to transition between different ecosystems, and their ability to cope with such variations is critical for their survival. Several Gram-positive species have developed an adaptive response mediated by the general stress response alternative sigma factor SigB. In order to understand the ecophysiological role of this regulator in Bacillus thuringiensis, an entomopathogenic bacterium widely used as a biopesticide, we sought to examine the fate of a ΔsigB mutant during its life cycle in the natural setting of an insect larva. This allowed us, in particular, to show that SigB was activated during infection and that it was required for the pathogenicity of B. thuringiensis via the oral route of infection.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference49 articles.

1. 1. Helmann JD, Morand CPJ. 2002. RNA polymerase and sigma factors, p 289–312. In Sonenshein AL, Hoch JA, Losick R (ed), Bacillus subtilis and its closest relatives: from genes to cells. American Society for Microbiology, Washington, DC.

2. A modified RNA polymerase transcribes a cloned gene under sporulation control in Bacillus subtilis;Haldenwang;Nature,1979

3. Gene encoding the sigma 37 species of RNA polymerase sigma factor from Bacillus subtilis;Binnie;Proc Natl Acad Sci U S A,1986

4. Resilience in the face of uncertainty: sigma factor B fine-tunes gene expression to support homeostasis in Gram-positive bacteria;Guldimann;Appl Environ Microbiol,2016

5. Identification of the sigmaB regulon of Bacillus cereus and conservation of sigmaB-regulated genes in low-GC-content Gram-positive bacteria;van Schaik;J Bacteriol,2007

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3